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Abstract— Visual odometry (VO) is typically considered as
a chicken-and-egg problem, as the localization and mapping
modules are tightly-coupled. The estimation of a visual map
relies on accurate localization information. Meanwhile, localiza-
tion requires precise map points to provide motion constraints.
This classical design principle is naturally inherited by visual-
inertial odometry (VIO). Efficient localization solutions that do
not require a map have not been fully investigated. To this
end, we propose a novel structureless VIO, where the visual
map is removed from the odometry framework. Experimental
results demonstrated that, compared to the structure-based VIO
baseline, our structureless VIO not only substantially improves
computational efficiency but also has advantages in accuracy.

I. INTRODUCTION

In the last two decades, the robotics and computer vision
communities have designed various VO/SLAM systems that
use only a monocular camera [I], [2], [3], [4]. According
to the formulation of visual constraints, these systems can
be broadly classified as feature-based methods and direct
methods. The common visual constraint used in feature-
based methods is the reprojection error whose observed
pixel location is from feature tracking or matching. And its
predicted pixel location depends on the estimated 3D position
of feature point through triangulation with multiple camera
poses. The photometric error employed in the direct method
typically relies on the depth estimation from coarse to fine.
The formulation of aforementioned visual constraints tightly
couples the visual map (structure) with localization (pose).

Merely using a monocular camera can not restore the true
physical scale due to the scale ambiguity. To address this
issue, researchers have proposed to fuse the camera with
an additional sensor, like an IMU. Thanks to the built-in
accelerometer, IMU can provide scale information to aid
visual localization. This fusion scheme is well-known as
visual-inertial odometry (VIO). The introduction of IMU
significantly increases the output frequency, robustness, and
accuracy of odometry; therefore, VIO is widely used in
AR/VR [5], [6], [7], [8], robotics [9], [10], [11], [12], and
planetary exploration [13], [14], [15].

For visual constraints, most classical VIO systems inherit
the design idea from VO, either using feature-based repro-
jection error [16], [17], [18], [19], [20] or direct photometric
error [21], [22]. The estimation of visual map (structure) and
localization (pose) is interdependent. In order to remove the
3D positions or 1D depths of feature points from the state
vector, the authors of Multi-State Constraint Kalman Filter
(MSCKEF) [16] proposed the idea of nullspace projection to
modify the residual equation of the reprojection error and
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Fig. 1: Left: factor graph for structure-based VI-BA. Right:
factor graph for structureless VI-BA.

marginalize feature points. However, triangulation or depth
estimation for feature points remains indispensable for the
entire MSCKF system [16], [19].

To fully decouple the localization (pose) from visual
map (structure), we design a novel structureless visual-
inertial bundle adjustment (VI-BA) that naturally eliminates
the dependence on the map (structure) by leveraging the
epipolar constraint. The key difference between the classic
structure-based VI-BA and the proposed structureless VI-
BA is presented in Fig. 1. By applying structureless VI-
BA, this paper extends our previous work on monocular
VIO initialization [23] to subsequent sliding-window based
optimization, yielding a novel and efficient structureless VIO.

II. STRUCTURE-BASED VIO

Before introducing the structureless VIO, we first briefly
describe the structure-based VIO to better illustrate the
differences in the context of keyframe-based VIO. Taking
VINS-Mono [18] as an example, a structure-based VIO
typically optimizes the following state in the sliding window
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Where state vector x includes NV 4 1 keyframe states and
M environmental features observed by these keyframes. z.,
represents the IMU state at keyframe timestamp ¢, including
the IMU’s position Gp 1,» velocity Go 1., orientation Iqu,
accelerometer bias b,, , and gyroscope bias by, . Ay, denotes
the inverse depth of an environmental feature point f;.

The structure-based VIO can be formulated as the follow-
ing structure-based VI-BA problem
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Where 7y, 17, (T, %c,) and ry are the prior resid-
ual from marginalization, IMU preintegration residual and
visual reprojection residual, respectively. Their detailed def-
initions are provided in Section VI of [18]. K ! is the set of
keyframes observing feature point f;. A robust Huber kernel
function pp.p (@) is used to mitigate the impact of pixel
observation outliers.

III. PROPOSED STRUCTURELESS VIO

We develop a novel structureless VIO based on VINS-
Mono [18]. For feature tracking, IMU preintegration and
sliding-window marginalization, we reuse the modules from
VINS-Mono. And the key modification is the formulation of
visual residual. The state variables of structureless VIO is
obtained by deleting the environmental feature points
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Unlike structure-based VIO, visual measurements are for-
mulated by epipolar constraints, completely eliminating the
dependence on 3D structure. Structureless VIO can be ex-

pressed as the following structureless VI-BA problem
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Where 7y, and r7,_, , (@¢,_,, %, ) are described in Equa-
tion (2). While rfj is the visual measurement residual gener-
ated by epipolar geometry. If a keyframe pair (7, j) observes
the same feature point f;, this co-view relationship can be
expressed using the epipolar constraint
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Where {ICR7 1 pc} are the extrinsic parameters between
IMU and camera. z;" and z}' represent the normalized
coordinates observations of the same feature point f; from
the keyframe pair (i, j). r;; has intuitive geometric interpre-
tation, i.e., two feature bearing vectors should be co-planar
with the frame-to-frame translation vector ¢, as depicted in
the Fig. 2. All direction vectors are expressed in the global
frame. ¢ is normalized to prevent it from converging to 0.

Detailed Jacobians are provided in Section V-B of [23].

Fig. 2: Co-planar geometric relationships for feature bearing
vectors with the frame-to-frame translation vector.

TABLE I: Performance comparison on EuRoC Dataset.

Sequence ATE (m) Avg solve time (ms)
VINS-Mono  Ours VINS-Mono  Ours
MH_01_easy 0.157 0.172 39.27 18.30
MH_02_easy 0.181 0.223 38.96 17.09
MH_03_medium 0.196 0.233 39.90 16.56
MH_04 _difficult 0.378 0.257 37.76 15.57
MH_05 _difficult 0.303 0.282 38.56 16.00
V1.01_easy 0.082 0.050 39.22 16.44
V1_.02_medium 0.112 0.084 33.54 13.27
V1.03_difficult 0.188 0.103 26.73 10.84
V2_01_easy 0.097 0.078 38.41 16.66
V2_02_medium 0.153 0.116 31.88 13.50
V2_03_difficult 0.298 0.245 20.87 10.40

[ Avg [ 0.195 0.168 [ 35.01 14.97 ]

TABLE II: Performance comparison on TUM-VI Dataset.

Sequence ATE (m) Avg solve time (ms)

q VINS-Mono Ours VINS-Mono Ours
room1 0.067 0.051 20.19 11.56
room?2 0.068 0.104 22.67 12.58
room3 0.121 0.114 19.73 11.89
room4 0.048 0.063 21.03 13.14
room5 0.217 0.127 18.17 11.27
room6 0.076 0.085 26.24 15.04

[ Avg [ 0.100 0.091 [ 21.34 12.58 ]
corridorl 0.629 0.398 18.62 11.46
corridor2 0.933 0.956 19.06 12.13
corridor3 1.978 0.893 16.75 10.98
corridor4 0.315 0.224 19.92 12.69
corridor5 0.689 0.456 19.56 12.36

[ Avg [ 0.909 0.585 [ 18.78 11.92 ]

IV. RESULTS

Our structureless VIO is compared to the structure-based
VINS-Mono [18]. The loop closure of VINS-Mono is dis-
abled for fair comparison. For the setting of other parameters,
we refer to VINS-Mono'. To verify the performance of
different VIO algorithms, we employ two popular VIO
datasets, EuRoC [24] and TUM-VI [25]. All the experiments
are conducted on a laptop computer with an Intel(R) Xeon(R)
W-10855M CPU @ 2.80GHz, and 16 GB of RAM.

Absolute trajectory error (ATE) [26] and the average solve
time are recorded in TABLE I and TABLE II. Results demon-
strate the structureless VIO scheme brings remarkable com-
putational efficiency advantage over structure-based VIO.
Moreover, structureless VIO can further improve accuracy
and we attribute it to the independence of epipolar constraint
from depth uncertainty, especially critical for corridor scenes.

V. CONCLUSION

In this paper, we introduce a novel structureless VIO
that adopts epipolar constraint instead of reprojection er-
ror or photometric error to formulate visual measurement.
Experimental results on two publicly benchmark datasets
demonstrate that our method reduces the optimization time
by a large margin and offers improvement in accuracy.
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